

Microcystin ELISA kit

Cat #: orb59527 (manual)

General description

The ELISASreening Kit is an immunochemical test for the quantitation of Microcystins (MCY) in algae or water samples. The test principle is based on a direct competitive enzyme-linked Immunosorbent assay (dcELISA). In the assay, MCY toxin in the sample competes with horseradish peroxidase-conjugated MCY for a limited amount of antibody which has been coated on the bottom of the test wells.

Materials and reagents supplied

- 1. One microtiter plate containing 96 test wells coated with polyclonal antibody specific to MCY
- 2. One vial of [Negative control], 1.5 mL
- 3. One vial each of 0.1, 0.5, 1.0, 2.0, and 5.0 ppb MCY-LR standard (calibrator), 1.5 mL
- 4. One vial of 【HRP conjugate】, 6 mL
- 5. One vial of [Substrate], 12 mL
- 6. One vial of **Stop solution**, 12 mL
- 7. One vial of [10 x Wash buffer], 30 mL

Additional materials not provided

- 1. 10 ml syringes
- 2. 0.45-micron, non-sterile filter units
- 3. Pipette and centrifuge tubes
- 4. Marking pen
- 5. Tape or Parafilm
- 6. Distilled water or tap
- 7. Microtiter plate reader or strips reader
- 8. Absorbent paper towels
- 9. Timer
- 10. Extraction buffer: 0.1 M ammonium bicarbonate
- 11. Calculator (Optional)
- 12. A multi-channel pipette (Optional)
- 13. Orbital shaker (Optional)
- 14. Solid phase extraction devices (Optional)
- 15. Microtiter plate washer (Optional)

www.biorbyt.com

Sample preparation

Solid sample

- 1. Weigh out 2 g lyophilized algae sample and add 20 mL extraction buffer
- 2. Homogenize for 3 minutes with a tissue homogenizer
- 3. Centrifuge (3000 rpm for 3 minutes) to collect supernatant or pass through a filter to collect filtrate
- 4. Take one mL of clear supernatant solution (or filtrate) and add 9 mL (1:10 dilution) or 99 mL of distilled water (1:100 dilution)
- 5. Use this diluted solution in the ELISA

Water sample

- 1. Water samples should be filtered to remove particulate
- 2. If a lower sensitivity for microcystins is required (<0.01ppb), a solid-phase extraction device such as C18 reverse phase could concentrate the sample.

Assay Procedure

- 1. Format the microplate's wells for each standard or sample to be assayed in duplicate. Replace any unused microwell strips back into the aluminum bag and stored at 2-8°C.
- 2. Wash buffer preparation
 - Dilute 10 x washing buffer with distilled water to make 1 x washing buffer by 1:9 ratio. Check if the 10X Wash buffer is at room temperature and the crystal at the bottom is dissolved thoroughly before use.
- 3. Add 50 μ L of Negative control and standard solution (0.1, 0.5, 1.0, 2.0, and 5.0 ppb) or 50 μ L of each sample into the assigned well.
- 4. Add 50 μ L of MCY-HRP enzyme conjugate solution (HRP conjugate) to all wells. Swirl the plate gently to mix the content thoroughly. Now the volume of each well is 100 μ L.
- 5. Incubate 30 minutes at room temperature (25-37°C) under dark.
- 6. Remove liquid from all wells.
- 7. Flood the wells with at least $300-350~\mu\text{L}$ of 1 x washing buffer, and then decant the liquid from all wells.
- 8. Repeat the step 7 at least three times.
- 9. Invert and gently pat the plate on absorbent paper towels to remove remaining solution in wells .
- 10. Add 100 µL of substrate solution to each well and shake gently.
- 11. Incubate 30 minutes at room temperature (25-37°C) under dark. Blue color develops in the wells with Negative control.
- 12. Add 100 μ L of stop solution to each well and mix gently (Now the volume of each well is 200 μ L). Solution will turn from blue into yellow immediately.

2/4

13. Read color at OD 450 nm in an ELISA reader within 3-15 minutes after adding the stop solution.

orb59527

Explore. Bioreagents.

Example of typical plate setup.

	1	2	3	4	5	6	7	8	9	10	11	12
A			S1	S1	S 9	S 9						
В	NC	NC	S2	S2	S10	S10						
С	C1	C1	S3	S3								
D	C2	C2	S4	S4								
Е	C3	C3	S5	S5								
F	C4	C4	S 6	S6								
G	C5	C5	S7	S7								
Н			S8	S8								

NC: Negative Control

C1= 0.1 ppb MCY-LR standard

C2= 0.5 ppb MCY-LR standard

C3= 1.0 ppb MCY-LR standard

C4= 2.0 ppb MCY-LR standard

C5= 5.0 ppb MCY-LR standard

S1, S2, S3, S4, S5 etc.=Samples

Calculating Results

1. After reading the wells, average the OD of each set of calibrators and samples, and calculate the $B/B_0\%$ as follows:

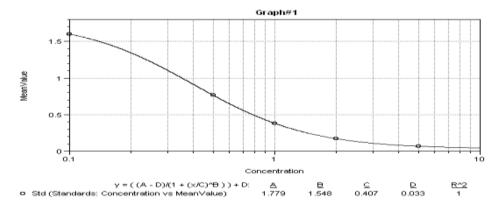
average OD of Calibrator or sample
$$B/B_0\% = \frac{}{\text{average OD of Negative Control}} \times 100$$

The $\%B_0$ calculation is used to equalize different runs of assay. While the raw OD values of Negative Control, Calibrators, and samples may different from run to run, the $\%B_0$ relationship of calibrators and samples to Negative Control should remain fairly constant.

- 2. Graph the B/B₀% of each Calibrator against its Microcystin concentration on a semi-log scale
- 3. Determine the Microcystin concentration of each sample by finding its B/B₀ value and the corresponding concentration level on the graph.

www.biorbyt.com

Explore. Bioreagents.


4. Interpolation of sample concentration is only valid if the $B/B_0\%$ of sample falls within the range of the $B/B_0\%$'s set by calibrators.

Limit of detection

The detection limit for this assay based on MCY-LR is 0.01 ppb (ng/mL).

Performance data

1. MCY-LR standard curve

2. Cross -reactivity

variant	50 % B/B ₀
MCY-LR	0.48
MCY-YR	0.67
MCY-RR	4.0
Nodularin	1.78

Precision

Well Contents	%CV(n=7)			
Negative Control	4.3			
0.1 ppb Calibrator	3.7			
0.5 ppb Calibrator	4.8			
1.0 ppb Calibrator	4.6			
2.0 ppb Calibrator	4.9			
5.0 ppb Calibrator	8.4			

